Как отремонтировать энергосберегающую лампочку: пошаговое фото + схема | Своими руками – Как сделать самому

Содержание

Ремонт энергосберегающей лампы своими руками: видео, схемы

Как отремонтировать энергосберегающую лампочку: пошаговое фото + схема | Своими руками - Как сделать самому

Энергосберегающие лампы действительно потребляют значительно меньше электроэнергии, чем аналоги с нитью накала, но стоят они в несколько раз дороже последних. И, как показывает практика, выходят из строя чаще.

Вдвойне обидней, когда это происходит через два-три месяца после приобретения. В таких случаях не стоит их выбрасывать в мусорное ведро по двум причинам. Во-первых, в этих осветительных приборах содержится ртуть, поэтому они требуют утилизации.

Во-вторых, с большой долей вероятности лампу можно восстановить. Расскажем, как это можно сделать.

Особенности конструкции

Прежде, чем приступать к ремонту, необходимо понимать устройство осветительного прибора. Основные элементы конструкции представлены на рисунке 1.

Рис. 1. Устройство энергосберегающей лампы

Обозначения:

  • А – Колба спиралевидной формы. По сути это запаянная трубка, внутри нее находится инертный газ (как правило, аргон) и пары ртути. С каждого ее края вплавлены два электрода, между которыми натянута нить накала. Внутренняя часть трубки покрыта люминофором.
  • В – Верхняя часть корпуса, к которой крепится колба. Сразу предупреждаем, что вытащить колбу не нарушив целостность корпуса нереально, поэтому их лучше воспринимать как единую конструкцию.
  • С – смонтированное на печатной плате пускорегулирующее устройство, его еще называют электронным балластом или просто балластом. Как вы понимаете, при его выходе из строя, осветительный прибор превращается в предмет утилизации. Схема балласта будет приведена в соответствующем разделе.
  • D – Предохранитель, как правило, его роль играет низкоомное сопротивление.
  • E – Нижняя часть корпуса, в него устанавливается балласт, крепление с верхней частью обеспечивается при помощи защелок.
  • F – цоколь. В быту более распространены типы Е14 (миньон) и Е27. Нижняя часть корпуса с цоколем, также представляют собой единую, неразборную конструкцию. На внешней части корпуса нанесена маркировка осветительного прибора, где указаны его основные характеристики.

Основные этапы ремонта

Системный подход к любой задаче обеспечивает оптимальный способ ее решения, поэтому будем действовать по следующему алгоритму:

  1. Подготовка необходимых инструментов.
  2. Демонтаж конструкции.
  3. Поиск и устранение неисправностей.
  4. Сборка конструкции.

Теперь подробно о каждом этапе.

Необходимые инструменты

В процессе работы нам понадобятся:

  • плоская отвертка;
  • цифровой мультиметр;
  • паяльник мощностью 25-30 Вт и все необходимое для пайки.

Демонтаж

Все действия делаем аккуратно, стараясь не повредить корпус, а тем более колбу лампы, в которой находятся пары ртути, представляющие опасность для человеческого организма.

Как уже было сказано выше, верхняя и нижняя части корпуса соединены между собой защелками. Чтобы их разъединить, необходимо вставить отвертку в щель (показано на рис 2) и слегка повернуть ее. Рекомендуем начинать с места, где нанесена маркировка, как правило, там находится одна из защелок.

Рис. 2. Паз между верхней и нижней частью корпуса

Освободив защелку, передвигаемся далее по пазу и продолжаем процедуру, пока верхняя и нижняя часть не отделятся друг от друга.

Части корпуса разъединились

Теперь нам необходимо отсоединить провода, соединяющие нить накала лампы и плату. Всего их четыре штуки. В большинстве конструкций провода не припаяны на плату, а намотаны на специальные штырьки.

Штырьки, к которым прикручены провода с колбы

После этого этапа можно переходит к поиску неисправностей.

Поиск неисправностей

Осветительный прибор может не работать из-за неисправности колбы (перегорела одна или обе нити накала) или вследствие выхода из строя пускорегулирующего устройства. Начнем проверку с колбы.

Для этой цели нам понадобится мультиметр. Переводим его в режим измерения низкоомного сопротивления и прозваниваем каждую пару выводов. Как правило, их сопротивление не превышает 15 Ом. Может иметь место незначительное расхождение в показаниях по каждой паре, но, это, скорее всего погрешность прибора.

Проведя измерения можно сформировать первоначальные выводы:

  • Если обнаружен обрыв нити накала, то пускорегулирующее устройство с большой вероятностью работоспособное. Колба подлежит утилизации, а электронный балласт можно отложить до лучших времен, например, если потребуется произвести его замену на однотипном приборе освещения. Заметим, что при одной перегоревшей нити накала, лампу можно восстановить. Как это сделать будет рассказано в разделе, посвященном пускорегулирующему устройству.
  • В том случае, когда с колбой все в порядке, моно констатировать выход из строя балласта. Как и большинство электронных устройств, он подлежит ремонту.

Ремонт балласта

В первую очередь необходимо произвести визуальный осмотр. В большинстве случаев с его помощью можно определить сгоревшие компоненты, например вздутые емкости, разрушенные корпуса транзисторов, следы подгорания и т.д. Заметим, что замена таких элементов может не дать результата, в этом случае потребуется проверка всей цепи.

Если проблемы не обнаружены, необходимо проверить основные элементы. Для этого желательно иметь схему пускорегулирующего устройства.

Схема балласта

Приведенная схема является типовой, она используется практически во всех балластах с небольшими изменениями.

Рисунок 5. Схема электронного балласта

Обозначения:

  • Сопротивления: R1 – от 1 до 30 Ом (играет роль предохранителя); R2 и R3– от 220 кОм до 510 кОм; R4 и R5– от 1 до 2,7 Ом; R6 и R7– от 8,2 до 20 Ом.
  • Емкости: С1 – 0,1 мкФ; С2 – от 1,5 мкФ до 10 мкФ 400В; С3 – 0,01 мкФ; С4 – от 0,033 мФ до 0,1 мкФ 400В; С5 – от 1800 пФ до 3900 пФ 650В.
  • Диоды: VD1-VD5 – 1N4005; VD6 и VD7 – 1N4148.
  • Динистор VS1 – DB3 (в осветительных приборах малой мощности может не использоваться).
  • Транзисторы: VT1, VT2 – 13003 (вполне возможны другие аналоги).

Катушка L1 совместно с емкостью С1 играет роль фильтра помех, во многих недорогих китайских приборах вместо нее запаяна перемычка.

Катушка L2 может иметь от 250 до 350 витков, которые намотаны проводом Ø 0,2 мм на ферритовый сердечник, имеющий Ш-образную форму. По внешнему виду напоминает небольшой трансформатор.

Трансформатор Т1 в каждой обмотке от 3 до 9 витков, как правило, используется провод Ø 0,3 мм. В качестве магнитопровода используется ферритовое кольцо.

Предохранитель: FU1 – 0.5 A. В большинстве изделий, произведенных в Китае он не устанавливается. В таких случаях роль предохранителя выполняет низкоомное сопротивление R1. Именно оно сгорает в первую очередь. Как правило, замена не дает результата, поскольку его выход из строя является следствием неисправности, а не причиной.

Поиск неисправностей в балласте

Алгоритм действий будет следующим:

  • Начинать нужно с замены предохранительного резистора, при проблемах с балластом, он практически всегда выгорает.Предохранительный резистор отмечен красным
  • После замены начинаем поиск неисправных компонентов. В приведенной схеме чаще всего из строя выходят емкости, именно с них необходимо начинать проверку. Для этого вооружаемся паяльником и выпаиваем конденсаторы С3-С5 (см. схему на рис. 5). После этого проверяем их при помощи мультиметра (как проверить различные электронные компоненты можно узнать на нашем сайте).

Обратим внимание, что в тех случаях, когда осветительный прибор вышел из строя, но наблюдется небольшое свечение колбы в области нитей накала, можно с уверенностью сказать — необходима замена емкости С5.

Как видно из схемы, она является частью колебательного контура, необходимого для формирования высоковольтного импульса, чтобы вызвать разряд.

При сгоревшей емкости, напряжения для разряда недостаточно, в результате лампа не может перейти в фазу рабочего режима, но на спирали подается питание. Это и проявляется в виде небольшого свечения.

  • Если с емкостями все в порядке, следует протестировать диоды, входящие в состав моста. В данном случае тестирование можно произвести без выпаивания с платы. Если хоть один из них вышел из строя. Велика вероятность, что будет пробита емкость С2.Электролитический конденсатор С2 отмечен красным

Соответственно, если при внешнем осмотре обнаружилось вздутие C2, велика вероятность выхода из строя одного или нескольких диодов моста.

  • Если перечисленные деталями исправны, то следует проверить транзисторы. Их придется проблема выпаивать, поскольку обвязка не даст точно провести измерения. Как показывает практика, в ходе вышеописанных этапов тестирования неисправность будет обнаружена.
  • Обнаружив неисправность, необходимо протестировать работу осветительного прибора, подав питание на цоколь. Делать это нужно аккуратно, поскольку на элементах платы присутствует высокое напряжение.

После того, как лампа зажглась, отключаем ее и приступаем к сборке. С ней проблем, как правило, не бывает.

Ремонт лампы с перегоревшей нитью накала

Необходимо сразу предупредить, что такой ремонт приведет к тому, что балласт будет работать в нештатном режиме. В результате перегрузки пускорегулирующее устройство выйдет из строя. Как правило, оно работает в таком режиме не более года, продолжительность зависит от задействованных в схеме элементов и их состояния.

Если сгорела только одна нить накала, ее необходимо зашунтировать сопротивлением, так как это продемонстрировано на рисунке.

Установка шунта на сгоревшую нить накала

В качестве шунтирующего сопротивления RШ теоретически необходимо устанавливать резистор с номиналом, соответствующим сопротивлению второй (целой) нити накала.

Но, как показывает практика, это не совсем верно, потому, что мы измеряем сопротивление «холодной» нити. В результате такого ремонта устройство выйдет из строя в течение 10-15 минут «спалив» при этом большую часть активных компонентов.

Поэтому мы советуем использовать резистор номиналом 22 Ома мощностью не менее 1 Ватта.

Источник: https://www.asutpp.ru/remont-energosberegayushhej-lampy-svoimi-rukami.html

Энергосберегающая лампа: ремонт своими руками — мой опыт

Как отремонтировать энергосберегающую лампочку: пошаговое фото + схема | Своими руками - Как сделать самому

Когда производители начали массовый выпуск компактных люминесцентных ламп, то заявили, что они экономят энергию. А деньги? Ведь их ресурс заявлен 1000 часов, как и у лампочки Ильича на 60 ватт, а стоят они дороже.

Напрашивается решение — если перегорела энергосберегающая лампа: ремонт своими руками делать надо и продлевать ей жизнь.

Дальше делюсь личным опытом в этом вопросе, подробно поясняю основные этапы технологии поиска неисправностей фотографиями и схемами.

Устройство КЛЛ и физические процессы, вызывающие свечение газового разряда обычной люминесцентной лампы, идентичны. Отличия же заключаются в элементной базе, из которой создается схема пускорегулирующей аппаратуры и габаритах светильника.

Компактная лампа вкручивается в обычный патрон, а простая люминесцентная выполняется длинной трубкой.

На примере последней удобнее объяснять основные принципы работы схемы освещения, которые необходимы для ремонта обеих конструкций. Без их понимания браться за паяльник и отвертку нет смысла.

Как работают люминесцентные лампы: 4 фазы запуска и отключения — простое объяснение

Внутри герметичного пространства стеклянной колбы находятся пары ртути, создающие ультрафиолетовый спектр излучения. В видимый свет его преобразует люминофор, нанесенный по внутренней поверхности трубки.

Газовый разряд, вызывающий свечение, протекает между электродами, образованными нитями накала. Для его розжига используется дроссель и стартер.

Фаза запуска №1. Разогрев нитей накала

При подаче напряжения выключателем на схему лампы в ней по замкнутой цепи начинает протекать переменный ток. Его путь: дроссель, одна нить накала, емкостное сопротивление стартера, вторая нить накала.

Металл обоих электродов разогревается, вокруг них создается электронная эмиссия, облегчающая возникновение тока газового разряда.

Фаза запуска №2. Замыкание контакта стартера

Дроссель, обладая индуктивным сопротивлением, первоначально накапливает электромагнитную энергию.

Внутри стартера между его электродами создается тлеющий разряд, нагревающий биметаллический контакт. Последний начинает выгибаться и замыкает дополнительную цепочку, подключенную параллельно электродам. Через нее начинает протекать ток.

Тлеющий разряд прекращается. Биметалл остывает.

Фаза запуска №3. Газовый разряд

Остывший биметалл стартера отключает контакт дополнительной цепочки.

Дроссель при разрыве цепи формирует импульс повышенного напряжения благодаря наложению ЭДС самоиндукции на сигнал бытовой сети 220 вольт.

Большой всплеск напряжения между электродами колбы пробивает электрическое сопротивление газовой среды, создается ток разряда в ней.

Дроссель же с момента возникновения газового разряда своим сопротивлением ограничивает ток в цепи, предотвращает дуговое замыкание. Лампа светится.

На этом этапе стартер уже выполнил свою задачу и в работе не участвует.

Фаза запуска №4.
Снятие напряжения выключателем

Разрыв цепи питания прекращает протекание газового разряда и свечение лампы.

Изложенная технология запуска за счет предварительного разогрева нитей накала называется горячей. Она обеспечивает наиболее экономный режим создания нагрузок на встроенные электроды, обеспечивает им повышенный ресурс.

Люминесцентную лампу можно запустить в работу быстрее, без прогрева нитей. Для этого между ними достаточно приложить импульс повышенного напряжения. Этот метод называется холодным запуском. Его применение значительно сокращает ресурс оборудования.

Энергосберегающие лампы: принцип работы осветительной схемы в картинках

Принцип работы КЛЛ такой же, как я показал кратко выше. Здесь происходят те же процессы:

  • прогрев нитей накала для обеспечения электронной эмиссии;
  • пробой газовой среды импульсом повышенного напряжения;
  • предотвращение дугового замыкания.

Только все эти функции возложены на электронику ЭПРА — пускорегулирующую аппаратуру или электронный пускатель, встроенный в стандартный цоколь лампы.

Он изготавливается из негорючего пластика, а электронный пускатель выполняется на обычной печатной плате круглой формы.

Встречаются и другие конструкции, когда механизм ЭПРА исполнен двумя раздельными блоками:

  1. сетевым выпрямителем с высокочастотным фильтром подавления исходящих помех;
  2. в/ч преобразователем.

Подобная схема распространена в импульсных блоках питания сложных цифровых электроприборов.

Более подробно описание ее составных частей буду приводить ниже.

Энергосберегающая лампа: ремонт с пошаговыми фотографиями

После знакомства с конструкцией можно сделать вывод, что поломка может возникнуть в одном из двух мест:

  1. внутри колбы;
  2. или в электрической схеме.

Реально найти неисправность можно только проведением внутреннего осмотра.

Как разобрать энергосберегающие лампы: советы для новичков

Буду описывать и показывать фотографиями свой личный опыт. Допускаю, что у каких-то изделий могут быть отличия.

Корпус светильника состоит из двух разъемных частей. Щель между ними малозаметна. Она может быть заполнена герметиком или быть без него. Определить это можно тонким, острым лезвием. Например, канцелярским ножом.

Первоначально мне пришлось прорезать по окружности слой наполнителя. Но тонкое лезвие под приложенным усилием на изгиб стало сильно гнуться.

Тогда я взял нож электрика. Его толстый клинок приспособлен к работе даже с металлами. Осторожно стал раздвигать им образовавшуюся щель в противоположные направления.

С одной стороны пришлось даже подрезать остатки клея. Работал очень осторожно. Можно легко продавить пластик и повредить корпус. Тогда возникнут дополнительные проблемы.

Когда раздвигаешь щель ножом или тонкой отверткой, то разъединяется зацепление верхней и нижней части: выступы выдавливаются из пазов.

На очередном фото их лучше видно.

Так выглядят две встроенные платы, соединенные между собой проводами.

Плата сетевого фильтра с выпрямителем подключена проводами к цоколю и преобразователю.

Она же снизу закрыта крышкой в виде диэлектрического основания с защелками.

Она предотвращает соприкосновение двух плат, защищает от создания короткого замыкания и обеспечивает промежуток для отвода тепла за счет естественной вентиляции.

После того как удалось разобрать энергосберегающую лампу сразу проводите внутренний осмотр всех ее частей. Обращайте внимание на почернения, обугливания, другие повреждения.

В моем случае сами платы были чистыми, следов нагара на них не было.

Дорожки тоже находились в рабочем состоянии. Пайка радиодеталей выполнена нормально, явных дефектов не просматривается.

Раз визуальный осмотр электронных компонентов не выявил повреждений, то дальше следует осматривать колбу.

Ремонт оборванной нити накаливания: 2 доступных способа

Первый беглый взгляд на выход нитей накаливания показал на повреждение изоляции, выгорание части наполнителя от повышенного нагрева.

Интересно то, что медные проволоки выводов от нитей накаливания просто намотаны на штырьки платы. Никакой пайки нет. Металл меди почернел, покрыт слоем окислов.

Это косвенный признак повреждения нитей накаливания. Сразу можно сделать вывод, что по ним проходили большие токи, а отвод тепла явно не достаточен. Одна из причин нагрева — повышенное сопротивление места контактов из-за отсутствия пайки.

Дальше необходимо определить исправность электродов, способность их вызывать электронную эмиссию и осуществлять горячий запуск энергоберегалки. Делать это можно только электрическими замерами, а к ним надо подготовиться.

Потребуется разобрать цепочку схемы разогрева нитей накала для прозвонки их целостности. Это удобно делать пинцетом.

Разомкнутая цепь выглядит следующим образом.

Для выполнения электрической проверки нам вполне достаточно отмотать и развести всего одну проволочку, а вторую трогать пока не рекомендую.

Подготовленную к замеру схему платы показываю фотографией ниже. На ней же хорошо видны прогары изоляции.

Далее просто берем цифровой мультиметр или обычный тестер и выполняем им замер электрического сопротивления нитей.

Таким способом я выявил, что с одной стороны колбы нить накала у лампы перегорела и оборвана, а с противоположной — целая. Пометил их для памяти шариковой ручкой и восстановил намотку отключенных проволочек тем же пинцетом.

Дальше предстоит выбор способа ремонта и запуска энергосберегающей лампы по одному из двух вариантов:

  1. горячим методом с бережным розжигом оставшейся в работе нити накаливания;
  2. быстрым холодным способом.

Я выбрал первый. Его и описываю вначале.

Бережной ремонт колбы энергосберегающей лампы

Здесь никаких хитростей нет. Просто надо учесть величину электрического сопротивления нити накаливания. Обычно она где-то в пределах 4÷5 Ом. Потребуется подобрать такой же резистор.

Перебрал одну коробку. В ней его не оказалось, а копаться в остальном запасе было лениво. Решил показать выход из такой ситуации. Спаял составную конструкцию. Для наглядности сделал ее длинной.

Получилась такая смешная схема: она вполне годится для понимания технологии ремонта светильника, а в реальной жизни потребуется найти нормальный резистор. Это не сложно. Его, кстати, надо подобрать по мощности не менее ватта, а лучше 2.

Для наглядности это составное сопротивление примотал проволоками к ножкам оборванной нити: зашунтировал им оборванный контакт. Цоколь вкрутил в патрон настольной лампы (абажур снят — смотрите на фото выше).

Подаю на собранную схему напряжение и вижу светящуюся рабочую лампочку.

Остается только подобрать нормальный резистор, запаять его на место составного и собрать все в обратной последовательности внутри диэлектрического корпуса.

Думаю, что особых знаний тут не требуется. На сём перехожу к объяснению ремонта колбы вторым методом.

Вывод: замена оборванной нити накаливания шунтирующим резистором у энергосберегающей и люминесцентной лампы восстанавливает оборванную цепь прохождения тока запуска через стартер или ЭПРА.

Схема холодного запуска энергосберегающей лампы с оборванной нитью

В этой ситуации газовый разряд внутри колбы создается банальным повышением напряжения между электродами за счет подключения умножителя из диодов и конденсаторов.

Стационарная схема ЭПРА выцепляется из работы. Если она исправна, то ее можно использовать для подключения к другим колбам по принципу горячего запуска. Только следует обратить внимание на соответствие мощностей блока и источника света.

При холодном запуске целая нить накала будет подвергаться экстремальным нагрузкам. Сколько она прослужит дальше рассчитать сложно. Поэтому рекомендую сразу зашунтировать обе на всех концах стеклянной колбы.

Умножитель поднимает величину напряжения до киловольта. На такое значение в принципе рассчитана бытовая проводка. Для изоляции эта опасность не особо критична, а человек подвергается повышенным рискам травматизма от воздействия электрического тока.

Из личного опыта: по схеме холодного запуска лет десять назад восстановил работоспособность пары люминесцентных ламп. Они до сих пор светят.

Для запуска перегоревших энергосберегающих ламп по такой схеме необходимо учесть габариты получающегося умножителя напряжения.

Вполне вероятно, что он не поместится в корпусе цоколя даже при изъятом электронном балласте ЭПРА.

В этой ситуации придется делать для него внешний корпус и подключать лампу через дополнительные соединители.

Поэтому сразу прикидывайте габариты получающегося умножителя и место под него внутри цоколя колбы.

Ремонт ЭПРА: на что обращать внимание

Самый простой способ проверки исправности пускорегулирующей аппаратуры заключается в подключении ее на колбу с целыми нитями накала и подаче входного напряжения 220. Если лампа светится, то ЭПРА исправна. В противном случае необходимо искать неисправности.

Обычно хозяин покупает в магазине не одну, а несколько одинаковых ламп для организации освещения. Когда они выходят из строя, то их не стоит выбрасывать, а следует проверять причину поломки.

Довольно часто можно собрать одну исправную из двух поврежденных. Еще останутся запасные детали, которые тоже пойдут в дело со временем.

Принципы построения схем импульсных преобразователей и основные типы их конструкций я изложил отдельной статьей для начинающих мастеров. Рекомендую ознакомиться. Многие положения пригодятся при устранении возникающих неисправностей.

При ремонте аппаратуры ЭПРА необходимо соблюдать ту же последовательность действий, что и для ИБП.

Типовую схему электронной пускорегулирующей аппаратуры показываю на картинке ниже. У какой-то конструкции она может незначительно отличаться, но алгоритм действий для проверки элементов практически не меняется.

Предохранитель FU1 стоит в цепи подачи 220 вольт и работает
совместно с резистором R1 (1÷30 Ом) на выпрямительный мост VD1÷VD4 (TN4005). Диод VD5 этой же марки, а VD6 и VD7 — 1N4148.

Марка динистора VS1 DB3. Он в лампах маленькой мощности может отсутствовать. Транзисторами чаще всего используют MJE 13003.

Номиналы емкостей: С1 и С3 — 0,1мкФ; С2— 1,5÷10 мкФ (400В); С4 — 0,033÷0,1 мкФ (400В);

С5 — 1800÷3900пФ (650 В).

Источник: https://ElectrikBlog.ru/energosberegayushhaya-lampa-remont-svoimi-rukami/

Ремонт энергосберегающих ламп своими руками

Как отремонтировать энергосберегающую лампочку: пошаговое фото + схема | Своими руками - Как сделать самому

Здравствуйте уважаемые читатели сайта sesaga.ru. В этой статье хочу поделиться с Вами, как отремонтировать энергосберегающую лампу своими руками не зная принципиальной схемы устройства.
Идея с ремонтом возникла тогда, когда вышла из строя одна из ламп, проработавшая около месяца.

Хотя если верить производителю, то срок службы у энергосберегающих ламп просто огромен. Купил себе лампу, отдал деньги и радуйся. Она тебе и светит и электроэнергию экономит!

А так как энергосберегающие лампы стоят не дешево, и один раз в месяц покупать лампу за 5 – 8 зеленых, мне показалось расточительно. Какая тут может быть экономия? Даже получается дороже.

Как обычно полез в интернет, а там оказывается, что «наши» люди такие лампы уже ремонтируют давно. Причем успешно. Вот и сам решил попробовать.

1. Разбираем энергосберегающую лампу

У лампы, которую начал разбирать, надломил нижнюю часть патрона, поэтому будьте осторожны, если будете половинить любую энергосберегающую лампу. Но это не беда – устраняется.

Когда лампа уже будет отремонтированна и собрана, прикладываем оторванную часть на место, и паяльником пропаиваем трещены. Можно приклеить — кому как удобно.

Половинить энергосберегающую лампу лучше всего рабочей частью отвертки. Внутри патрона есть специальные защелки, которые надо будет отщелкнуть. Если Вы когда-нибудь разбирали пульт дистанционного управления или сотовый телефон, то это похожая процедура.

https://www.youtube.com/watch?v=sGLFb6Zh_54

Только здесь делаете так: вставляете рабочую часть отвертки между двух половинок, и крутите отвертку вправо или влево. Когда щель увеличится, в нее можно вставить еще одну отвертку, а первой немного отступаете, вставляете в щель и опять проворачиваете. Здесь самое главное, как в пульте дистанционного управления — отщелкнуть первую защелку.

Когда у Вас в руках окажутся две половинки, раздвигайте их осторожно. Здесь не надо торопиться, можно оторвать провода.

Перед Вами окажется плата электронного блока, которая одной частью связана с цоколем, а другой — с колбой лампы. Сама плата электронного блока – это обыкновенное пускорегулирующее устройство, которое обычно установлено в старых светильниках дневного света. Только здесь электроника, а там дроссель и стартер.

2. Определяем степень повреждения лампы

Первым делом осматриваем плату с обеих сторон и визуально определяем, какие из деталей явно повреждены и подлежат замене.

Со стороны радиокомпонентов видимых нарушений не было, а вот со стороны дорожек, где расположены SMD компоненты, видны два резистора R1 и R4, которые однозначно надо менять.

Здесь еще с правой стороны резистора R1 отгорел кусочек дорожки. Это может говорить о том, что в момент включения лампы или во время ее работы, вышел из строя элемент схемы, от чего произошло замыкание в схеме.

Первый осмотр не очень обнадежил. Если горят резисторы и дорожки, то это говорит о том, что схема работала в тяжелом режиме, и заменой только этих резисторов мы не отделаемся.

Предохранитель

В первую очередь проверяем предохранитель. Найти его легко. Одним концом он припаян к центральному контакту цоколя лампы, а вторым к плате. На него надета трубка из изоляционного материала. Обычно при такой неисправности предохранители не выживают.

Но как оказалось, это не предохранитель, а пол ваттный резистор сопротивлением около 10 Ом, причем был сгоревшим (в обрыве).

Определяется исправность резистора легко.
Мультиметр переводите в режим измерения сопротивления на предел «прозвонка» или «200» и производите замер. Если резистор-предохранитель целый, то прибор покажет сопротивление около 10 Ом, ну а если покажет бесконечность (единицу), значит, он в обрыве. Как измерить сопротивление можно прочитать здесь.

Здесь один щуп мультиметра ставите к центральному контакту цоколя, а второй к месту на плате, куда припаян вывод резистора-предохранителя.

Еще один момент. Если резистор-предохранитель окажется сгоревшим, то когда будете его выкусывать, старайтесь откусить ближе к корпусу резистора, как показано на правой части верхнего рисунка. Потом к выводу, оставшемуся в цоколе, будем припаивать новый резистор.

Колба (лампа)

Далее проверяем сопротивление нитей накала колбы. Желательно выпаять по одному выводу с каждой стороны. Сопротивление нитей должно быть одинаковым, а если разное, значит, одна из них сгорела. Что не очень хорошо.

В таких случаях специалисты советуют параллельно сгоревшей спирали припаять резистор таким же сопротивлением, как у второй спирали. Но в моем случае обе спирали оказались целыми, а их сопротивление составило 11 Ом.

Следующим этапом проверяем на исправность все полупроводники – это транзисторы, диоды и стабилитрон. Если Вы не знаете, как проверить транзистор или диод, то прочитайте статью, как проверить транзистор мультиметром.

Как правило, полупроводники не любят работу с перегрузкой и коротких замыканий, поэтому их проверяем тщательно.

Диоды и стабилитрон

Диоды и стабилитрон выпаивать не надо, они и так прекрасно прозваниваются прямо на плате.
Прямое сопротивление p-n перехода диодов будет находиться в пределах 750 Ом, а обратное должно составлять бесконечность. У меня все диоды оказались целыми, что немного обрадовало.

Стабилитрон двуханодный, поэтому в обоих направлениях должен показать сопротивление равное бесконечности (единица).

Если у Вас некоторые диоды оказались неисправные, то их надо приобрести в магазине радиокомпонентов. Здесь используются 1N4007. А вот номинал стабилитрона определить не смог, но думаю, что можно ставить любой с подходящим напряжением стабилизации.

Транзисторы

Транзисторы, а их два — придется выпаять, так как их p-n переходы база-эмиттер зашунтированы низкоомной обмоткой трансформатора.

Один транзистор звонился и вправо и влево, а вот второй был якобы целым, но вот между коллектором и эмиттером, в одном направлении, показал сопротивление около 745 Ом. Но я значение этому не придал, и посчитал его неисправным, так как с транзисторами типа 13003 дело имел в первый раз.

Транзисторы такого типа, в корпусе ТО-92, найти не смог, пришлось купить размером больше, в корпусе ТО-126.

Резисторы и конденсаторы

Их тоже надо все проверить на исправность. А вдруг.

У меня еще оставался один SMD резистор, номинал которого небыло видно, тем более, что принципиальную схему этого пускорегулирующего устройства я не знал. Но была еще одна такая же рабочая энергосберегающая лампа, и она пришла мне на выручку. На ней видно, что номинал резистора R6 составляет 1,5 Ома.

Чтобы окончательно убедиться в том, что все возможные неисправности были найдены, я прозвонил все элементы на рабочей плате и сравнил их сопротивления на неисправной. Причем выпаивать ничего не стал.

В итоге, по цене вышло совсем не дорого:

1. Транзисторы 13003 – 2 шт. по 10 рублей каждый (в корпусе ТО-126 — взял 10 штук);2. SMD резисторы — 1,5 Ома и 510 кОм по 1 рублю каждый (взял по 10 штук);3. Резистор 10 Ом – 3 рубля за штуку (взял 10 штук);4. Диоды 1N4007 – 5 рублей за штуку (взял 10 штук на всякий случай);

5. Термоусадка – 15 рублей.

4. Сборка

Здесь меня ожидал сюрприз. Но об этом по порядку.

В первую очередь выпаиваем сгоревшие, а затем впаиваем новые SMD резисторы. Здесь, что-либо советовать трудно, потому что сам толком не научился их выпаивать.

Делаю так: паяльником прогреваю обе стороны одновременно, при этом пытаюсь сдвинуть резистор с места отверткой или жалом паяльника. Если есть возможность, то грею с боковой части резистора и выдавливаю жалом, а если нет, тогда грею верхнюю часть и двигаю отверткой. Только делать это надо аккуратно и быстро, чтобы не отклеились проводники от платы.

На фотографии видно, что резистор прогревается с боку.

Впаивать SMD резисторы намного легче!
Если на контактных площадках остался припой, и он мешает установке резистора, значит, его убираем.

Делается это просто: держите плату под наклоном дорожками вниз, и к контактной площадке подносите угол кончика жала. С жала предварительно тоже снимаете лишний припой.

Когда площадка прогреется, будет видно, как припой перетекает на паяльник. Опять же, делать это надо быстро и аккуратно.

На место ставите резистор, выравниваете его и прижимаете отверткой, и теперь по очереди припаиваете каждую сторону.

Теперь выпаиваем неисправные и впаиваем новые транзисторы. В нужном корпусе транзисторов не нашел, а эти немного великоваты, но цоколевка выводов соответствует. Что уже не плохо.
Здесь откусываем выводы, приблизительно, как на картинке ниже.

Выпаиваете неисправный, и так же впаиваете новый. Один транзистор будет стоять к Вам «передом», а второй «задом». На картинке ниже транзистор стоит «задом».

И последним этапом припаиваем предохранитель-резистор.
Откусываете вывод длиной, как на неисправном. Подпаиваетесь к выводу торчащему из цоколя, одеваете термоусадку, и только после этого, свободный вывод резистора припаиваем к плате на место.

Все готово. Но пока полностью лампу не собираем. Надо убедиться в ее работоспособности.

Еще раз внимательно осматриваем места, где производилась пайка и правильно ли установлены элементы схемы. Здесь нельзя ошибаться. Иначе весь процесс ремонта придется начать сначала.

Подаем питание на лампу. И вот тут у меня произошел хлопок. Рванул транзистор, причем с той же стороны, где неисправный прозванивался и вправо и влево. Ошибок в монтаже не могло быть – проверил несколько раз.

После хлопка потерял транзистор и резистор R6 номиналом 15 Ом. Все остальное было целое.

Опять разбираю рабочую лампу, и сравниваю сопротивление всех элементов. Все в норме. И тут вспомнил про транзистор, который был на половину исправный.

Когда такой транзистор выпаял с рабочей лампы и прозвонил, то оказалось, что между коллектором и эмиттером он так же показывает наличие сопротивления около 745 Ом в одну сторону. Тут стало ясно, что это не простой транзистор. Полез гуглить в интернет.

И тут на одном китайском сайте (ссылка удалена, так как сайт больше не работает) нахожу интересный материал про транзисторы серии 13003. Оказывается, они бывают простые, составные, с диодом внутри, и различаются только по последним 2 – 3 буквам, нанесенным на корпусе. В данном пускорегулирующем устройстве стояли составные транзисторы с диодом внутри.

Как оказалось, «неисправный» транзистор, у которого прозванивались коллектор и эмиттер в одну сторону, был «живой». И когда Вам придется менять транзисторы, вначале определите по последним буквам какой он – простой или составной.

Впаиваю новый транзистор, и между коллектором и эмиттером ставлю диод согласно приведенной схеме выше: катодом к коллектору, а анодом к эмиттеру.
Вместо резистора SMD ставлю обыкновенный на 15 Ом, так как с таким номиналом эсэмдэшного у меня небыло.

Опять подаю питание. Как видите — лампа горыть.

Вот и все.
Теперь, когда будете ремонтировать энергосберегающие лампы, надеюсь, Вам пригодится мой опыт.
Удачи!

Источник: https://sesaga.ru/remont-energosberegayushhix-lamp-svoimi-rukami.html

Ремонт энергосберегающих ламп своими руками: пошаговое описание как отремонтировать энергосберегающие лампы (140 фото)

Как отремонтировать энергосберегающую лампочку: пошаговое фото + схема | Своими руками - Как сделать самому

В современном обществе принято выбрасывать, а не чинить. Мало кто задумывается, что ремонт можно сделать своими руками и прилично сэкономить семейный бюджет. Обычная лампа накаливания не пригодна к ремонту, в энергосберегающих лампах можно отремонтировать практически всё.

Если в доме перегорела одна лампочка, то смысла чинить её нет, вам понадобятся недостающие компоненты, а если перегорело несколько, то можно использовать их как доноров и довольно быстро собрать из деталей одну полноценную новую лампочку.

Энергосберегающие лампы малогабаритны из-за встроенного пускорегулирующего аппарата.

Принцип экономности ламп

От поступающего напряжения происходит нагрев электродов и высвобождение электронов. Вследствие несложных химических реакций, протекающих в колбе производится ультрафиолетовое излучение.

Люминофор поглощает ультрафиолет и отдает свет. Все лампочки нового поколения делятся на два вида: качественные дорогие образцы с установленной системой охлаждения; китайские дешевые товары, чаще применяемые нами в быту, в целях экономии хозяев на цене.

Последние выходят из строя раньше, чем заканчивается срок годности. Мы ответим на вопрос как отремонтировать все виды светодиодных и энергосберегающих ламп.

Внешнее описание

Сама лампа имеет следующее устройство:

  • Колба — имеет вид спиралевидной трубки, прикрепляется к корпусу, наполнена ртутью и аргоном. От колбы идут два электрода;
  • Печатная плата — балласт.

    Играет руль пускорегулирующего устройства, регулирует режим тепла;

  • Предохранитель, исключающий замыкание и перегрузку;
  • Цоколь, препятствующий образованию коррозии; нижний корпус для защиты от пробивания электрическим током.

Азбука действий

Перед тем как взяться за ремонт ламп своими руками, нужно установить причину неисправности лампочки.

Нам понадобятся: отвертка, паяльник на 25 Вт, мультиметр.

Вскрываем лампочку. Необходимо отсоединить цоколь от рабочей части путем отвертки. В патроне есть защелки, процесс похож на вскрытие пульта ДУ.

Между двух половинок лампы крутим отверткой и отщелкиваем защелку. Если вы повредили корпус, то можно его припаять или склеить при сборке лампы.

Стеклянную лампу без повреждения корпуса разобрать практически невозможно, они, как правило, непригодны к ремонту.

Производим внешний осмотр, убеждаемся, что ничего не перегорело, не разрушено, плата не повреждена, элементы схемы не вздутые.

На светодиодных лампочках определяем неисправные светодиоды, прозванивая тестером. Внешне они либо почернели, либо имеют точки.

Рабочие светодиоды станут подсвечиваться. Сгоревшие меняем на рабочие при помощи паяльника. Если не работает один светодиод, достаточно замкнуть цепь.

Проверяем исправность предохранителя прозвонкой тестером. Предохранитель припаян одним концом к цоколю лампочки, другим к плате. Исправный показывает 10 Ом, неисправный (при единице или бесконечности) заменяем на новый.

Осматриваем резисторы. Если сгорели элементы дорожки, то заменой одних резисторов не обойтись. Выпаивем сгоревшие детали и устанавливаем новые. Резисторы обычно сгорают вместе с транзисторами.

Прозвонка на целостность двух спиралей (контактов по бокам). Мультиметр включаем в режим. Если звука не слышно, значит спираль оборвана.

На не работающую спираль ставится сопротивление, предварительно его замерив. Подбираем длину нихромовой проволокой высокого сопротивления. Зачищаем ее и также измеряем тестером.

Сопротивление необходимо подогнать под сопротивление спирали. Можно использовать резистор. Оборванные спирали являются самой частой причиной неисправности, они просто намотаны производителем и не припаяны.

При помощи патрона проверяем работоспособность изделия. Если лампа горит, собираем её.

Относитесь к ремонту и вскрытию очень внимательно, энергосберегающая лампа опасна для вашего здоровья, так как содержит пары ртути, не повредите колбу.

Светодиодные лампы являются более безопасными. Дешевые китайские лампочки ремонтируются проще.

Если вы освоили инструкцию по ремонту одной лампы, последующие изделия починить удастся за очень короткий промежуток времени.

Фото процесса ремонта энергосберегающих ламп своими руками

Вам понравилась статья? Поделитесь 😉  

Источник: https://electrikexpert.ru/remont-energosberegayushhix-lamp-svoimi-rukami/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.